Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.930
Filtrar
1.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600064

RESUMO

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Óperon/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Ann Clin Microbiol Antimicrob ; 23(1): 32, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600542

RESUMO

BACKGROUND: Elizabethkingia is emerging as an opportunistic pathogen in humans. The aim of this study was to investigate the clinical epidemiology, antimicrobial susceptibility, virulence factors, and genome features of Elizabethkingia spp. METHODS: Clinical data from 71 patients who were diagnosed with Elizabethkingia-induced pneumonia and bacteremia between August 2019 and September 2021 were analyzed. Whole-genome sequencing was performed on seven isolates, and the results were compared with a dataset of 83 available Elizabethkingia genomes. Genomic features, Kyoto Encyclopedia of Genes and Genomes (KEGG) results and clusters of orthologous groups (COGs) were analyzed. RESULTS: The mean age of the patients was 56.9 ± 20.7 years, and the in-hospital mortality rate was 29.6% (21/71). Elizabethkingia strains were obtained mainly from intensive care units (36.6%, 26/71) and emergency departments (32.4%, 23/71). The majority of the strains were isolated from respiratory tract specimens (85.9%, 61/71). All patients had a history of broad-spectrum antimicrobial exposure. Hospitalization for invasive mechanical ventilation or catheter insertion was found to be a risk factor for infection. The isolates displayed a high rate of resistance to cephalosporins and carbapenems, but all were susceptible to minocycline and colistin. Genomic analysis identified five ß-lactamase genes (blaGOB, blaBlaB, blaCME, blaOXA, and blaTEM) responsible for ß-lactam resistance and virulence genes involved in stress adaptation (ureB/G, katA/B, and clpP), adherence (groEL, tufA, and htpB) and immune modulation (gmd, tviB, cps4J, wbtIL, cap8E/D/G, and rfbC). Functional analysis of the COGs revealed that "metabolism" constituted the largest category within the core genome, while "information storage and processing" was predominant in both the accessory and unique genomes. The unique genes in our 7 strains were mostly enriched in KEGG pathways related to microRNAs in cancer, drug resistance (ß-lactam and vancomycin), ABC transporters, biological metabolism and biosynthesis, and nucleotide excision repair mechanisms. CONCLUSION: The Elizabethkingia genus exhibits multidrug resistance and carries carbapenemase genes. This study presents a comparative genomic analysis of Elizabethkingia, providing knowledge that facilitates a better understanding of this microorganism.


Assuntos
Antibacterianos , Infecções por Flavobacteriaceae , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Farmacorresistência Bacteriana/genética , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/genética , Genômica , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
3.
PLoS Biol ; 22(4): e3002577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626194

RESUMO

The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.


Assuntos
Bactérias , Eucariotos , Animais , Bactérias/genética , Eucariotos/genética , Genoma Bacteriano/genética , Simbiose/genética , Fenômenos Fisiológicos Bacterianos , Filogenia
4.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658529

RESUMO

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Infecções Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação , Streptococcus pyogenes/classificação , Infecções Estreptocócicas/transmissão , Infecções Estreptocócicas/microbiologia , Humanos , Streptococcus/genética , Streptococcus/isolamento & purificação , Sequências Repetitivas Dispersas/genética , Austrália , Genoma Bacteriano/genética , Feminino , Masculino , Criança , Características da Família , Adulto , Pré-Escolar , Adolescente , Estudos Longitudinais , Farmacorresistência Bacteriana/genética , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 121(13): e2313367121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517978

RESUMO

The chronology and phylogeny of bacterial evolution are difficult to reconstruct due to a scarce fossil record. The analysis of bacterial genomes remains challenging because of large sequence divergence, the plasticity of bacterial genomes due to frequent gene loss, horizontal gene transfer, and differences in selective pressure from one locus to another. Therefore, taking advantage of the rich and rapidly accumulating genomic data requires accurate modeling of genome evolution. An important technical consideration is that loci with high effective mutation rates may diverge beyond the detection limit of the alignment algorithms used, biasing the genome-wide divergence estimates toward smaller divergences. In this article, we propose a novel method to gain insight into bacterial evolution based on statistical properties of genome comparisons. We find that the length distribution of sequence matches is shaped by the effective mutation rates of different loci, by the horizontal transfers, and by the aligner sensitivity. Based on these inputs, we build a model and show that it accounts for the empirically observed distributions, taking the Enterobacteriaceae family as an example. Our method allows to distinguish segments of vertical and horizontal origins and to estimate the time divergence and exchange rate between any pair of taxa from genome-wide alignments. Based on the estimated time divergences, we construct a time-calibrated phylogenetic tree to demonstrate the accuracy of the method.


Assuntos
Genoma Bacteriano , Modelos Genéticos , Filogenia , Genoma Bacteriano/genética , Genômica/métodos , Bactérias/genética , Evolução Molecular
6.
Nature ; 628(8007): 424-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509359

RESUMO

Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Humanos , Camundongos , Adenoma/microbiologia , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Fezes/microbiologia , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/patogenicidade , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Genoma Bacteriano/genética , Boca/microbiologia , Feminino
7.
mSystems ; 9(4): e0121823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530055

RESUMO

Campylobacter species are typically helical shaped, Gram-negative, and non-spore-forming bacteria. Species in this genus include established foodborne and animal pathogens as well as emerging pathogens. The accumulation of genomic data from the Campylobacter genus has increased exponentially in recent years, accompanied by the discovery of putative new species. At present, the lack of a standardized species boundary complicates distinguishing established and novel species. We defined the Campylobacter genus core genome (500 loci) using publicly available Campylobacter complete genomes (n = 498) and constructed a core genome phylogeny using 2,193 publicly available Campylobacter genomes to examine inter-species diversity and species boundaries. Utilizing 8,440 Campylobacter genomes representing 33 species and 8 subspecies, we found species delineation based on an average nucleotide identity (ANI) cutoff of 94.2% is consistent with the core genome phylogeny. We identified 60 ANI genomic species that delineated Campylobacter species in concordance with previous comparative genetic studies. All pairwise ANI genomic species pairs had in silico DNA-DNA hybridization scores of less than 70%, supporting their delineation as separate species. We provide the tool Campylobacter Genomic Species typer (CampyGStyper) that assigns ANI genomic species to query genomes based on ANI similarities to medoid genomes from each ANI genomic species with an accuracy of 99.96%. The ANI genomic species definitions proposed here allow consistent species definition in the Campylobacter genus and will facilitate the detection of novel species in the future.IMPORTANCEIn recent years, Campylobacter has gained recognition as the leading cause of bacterial gastroenteritis worldwide, leading to a substantial rise in the collection of genomic data of the Campylobacter genus in public databases. Currently, a standardized Campylobacter species boundary at the genomic level is absent, leading to challenges in detecting emerging pathogens and defining putative novel species within this genus. We used a comprehensive representation of genomes of the Campylobacter genus to construct a core genome phylogenetic tree. Furthermore, we found an average nucleotide identity (ANI) of 94.2% as the optimal cutoff to define the Campylobacter species. Using this cutoff, we identified 60 ANI genomic species which provided a standardized species definition and nomenclature. Importantly, we have developed Campylobacter Genomic Species typer (CampyGStyper), which can robustly and accurately assign these ANI genomic species to Campylobacter genomes, thereby aiding pathogen surveillance and facilitating evolutionary and epidemiological studies of existing and emerging pathogens in the genus Campylobacter.


Assuntos
Campylobacter , Animais , Filogenia , Campylobacter/genética , Genoma Bacteriano/genética , Genes Bacterianos , DNA
8.
Nucleic Acids Res ; 52(7): 4079-4097, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499498

RESUMO

Genome-wide screens have become powerful tools for elucidating genotype-to-phenotype relationships in bacteria. Of the varying techniques to achieve knockout and knockdown, CRISPR base editors are emerging as promising options. However, the limited number of available, efficient target sites hampers their use for high-throughput screening. Here, we make multiple advances to enable flexible base editing as part of high-throughput genetic screening in bacteria. We first co-opt the Streptococcus canis Cas9 that exhibits more flexible protospacer-adjacent motif recognition than the traditional Streptococcus pyogenes Cas9. We then expand beyond introducing premature stop codons by mutating start codons. Next, we derive guide design rules by applying machine learning to an essentiality screen conducted in Escherichia coli. Finally, we rescue poorly edited sites by combining base editing with Cas9-induced cleavage of unedited cells, thereby enriching for intended edits. The efficiency of this dual system was validated through a conditional essentiality screen based on growth in minimal media. Overall, expanding the scope of genome-wide knockout screens with base editors could further facilitate the investigation of new gene functions and interactions in bacteria.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Edição de Genes , Edição de Genes/métodos , Escherichia coli/genética , Ensaios de Triagem em Larga Escala/métodos , Genoma Bacteriano/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Streptococcus/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/enzimologia , Aprendizado de Máquina , RNA Guia de Sistemas CRISPR-Cas/genética
9.
Microbiol Res ; 283: 127666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460283

RESUMO

The escalating prevalence of multidrug-resistant (MDR) bacteria pose a significant public health threat. Understanding the genomic features and deciphering the antibiotic resistance profiles of these pathogens is crucial for development of effective surveillance and treatment strategies. In this study, we employed the R10.4.1 nanopore sequencing technology, specifically through the use of the MinION platform, to analyze eight MDR bacterial strains originating from clinical, ecological and food sources. A single 72-hour sequencing run could yield approximately 12 million reads which covered a total of 34 gigabases (Gbp). The nanopore R10.4.1 data was processed using the Flye assembler, successfully assembling the genomes of eight bacterial strains and their 18 plasmids. Notably, the assemblies generated solely from R10.4.1 nanopore data closely matched those from next-generation sequencing data. Diverse antibiotic resistance patterns and specific resistance genes in the test strains were identified. Hospital strains that exhibited multidrug resistance were found to harbor various resistance genes that encode efflux pumps and extended-spectrum ß-lactamases. Environmental and food sources were found to display resistance profiles in a species-specific manner. The composition of structurally complex plasmids in the test strains could also be revealed by analysis of nanopore long reads, which also suggested evidence of horizontal transfer of plasmids between different bacterial species. These findings provide valuable insights into the genetic characteristics of MDR bacteria and demonstrating the practicality of nanopore sequencing technology for detecting of resistance elements in bacterial pathogens.


Assuntos
Sequenciamento por Nanoporos , Plasmídeos/genética , Genômica , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Bactérias/genética , Antibacterianos/farmacologia
10.
Nat Commun ; 15(1): 2072, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453959

RESUMO

Bacteria have an extensive adaptive ability to live in close association with eukaryotic hosts, exhibiting detrimental, neutral or beneficial effects on host growth and health. However, the genes involved in niche adaptation are mostly unknown and their functions poorly characterized. Here, we present bacLIFE ( https://github.com/Carrion-lab/bacLIFE ) a streamlined computational workflow for genome annotation, large-scale comparative genomics, and prediction of lifestyle-associated genes (LAGs). As a proof of concept, we analyzed 16,846 genomes from the Burkholderia/Paraburkholderia and Pseudomonas genera, which led to the identification of hundreds of genes potentially associated with a plant pathogenic lifestyle. Site-directed mutagenesis of 14 of these predicted LAGs of unknown function, followed by plant bioassays, showed that 6 predicted LAGs are indeed involved in the phytopathogenic lifestyle of Burkholderia plantarii and Pseudomonas syringae pv. phaseolicola. These 6 LAGs encompassed a glycosyltransferase, extracellular binding proteins, homoserine dehydrogenases and hypothetical proteins. Collectively, our results highlight bacLIFE as an effective computational tool for prediction of LAGs and the generation of hypotheses for a better understanding of bacteria-host interactions.


Assuntos
Genoma Bacteriano , Pseudomonas syringae , Genoma Bacteriano/genética , Pseudomonas syringae/genética , Fluxo de Trabalho , Genômica/métodos
11.
Nucleic Acids Res ; 52(6): 3180-3198, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407477

RESUMO

Mobile genetic elements play an important role in the acquisition of antibiotic and biocide resistance, especially through the formation of resistance islands in bacterial chromosomes. We analyzed the contribution of Tn7-like transposons to island formation and diversification in the nosocomial pathogen Acinetobacter baumannii and identified four separate families that recognize different integration sites. One integration site is within the comM gene and coincides with the previously described Tn6022 elements suggested to account for the AbaR resistance island. We established Tn6022 in a heterologous E. coli host and confirmed basic features of transposition into the comM attachment site and the use of a novel transposition protein. By analyzing population features within Tn6022 elements we identified two potential novel transposon-encoded diversification mechanisms with this dynamic genetic island. The activities of these diversification features were confirmed in E. coli. One was a novel natural gain-of-activity allele that could function to broaden transposition targeting. The second was a transposon-encoded hybrid dif-like site that parasitizes the host dimer chromosome resolution system to function with its own tyrosine recombinase. This work establishes a highly active Tn7-like transposon that harnesses novel features allowing the spread and diversification of genetic islands in pathogenic bacteria.


Assuntos
Acinetobacter baumannii , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Variação Genética , Ilhas Genômicas , Acinetobacter baumannii/genética , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Variação Genética/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética
12.
PeerJ ; 12: e16513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313017

RESUMO

Background: Corynebacterium pseudotuberculosis is a zoonotic Gram-positive bacterial pathogen known to cause different diseases in many mammals, including lymph node abscesses in camels. Strains from biovars equi and ovis of C. pseudotuberculosis can infect camels. Comparative genomics could help to identify features related to host adaptation, and currently strain Cp162 from biovar equi is the only one from camel with a sequenced genome. Methods: In this work, we compared the quality of three genome assemblies of strain Cp162 that used data from the DNA sequencing platforms SOLiD v3 Plus, IonTorrent PGM, and Illumina HiSeq 2500 with an optical map and investigate the unique features of this strain. For this purpose, we applied comparative genomic analysis on the different Cp162 genome assembly versions and included other 129 genomes from the same species. Results: Since the first version of the genome, there was an increase of 88 Kbp and 121 protein-coding sequences, a decrease of pseudogenes from 139 to 53, and two inversions and one rearrangement corrected. We identified 30 virulence genes, none associated to the camel host, and the genes rpob2 and rbpA predicted to confer resistance to rifampin. In comparison to 129 genomes of the same species, strain Cp162 has four genes exclusively present, two of them code transposases and two truncated proteins, and the three exclusively absent genes lysG, NUDIX domain protein, and Hypothetical protein. All 130 genomes had the rifampin resistance genes rpob2 and rbpA. Our results found no unique gene that could be associated with tropism to camel host, and further studies should include more genomes and genome-wide association studies testing for genes and SNPs.


Assuntos
Corynebacterium pseudotuberculosis , Animais , Ovinos/genética , Corynebacterium pseudotuberculosis/genética , Camelus/genética , Genoma Bacteriano/genética , Estudo de Associação Genômica Ampla , Rifampina , Análise de Sequência de DNA
13.
Nature ; 626(7999): 661-669, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267581

RESUMO

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Assuntos
Bactérias , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Bactérias/genética , Replicação do DNA/genética , Dosagem de Genes/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Óperon/genética , Análise de Sequência de RNA , Transcrição Gênica/genética , Cromossomos Bacterianos/genética
14.
Nature ; 627(8002): 182-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267579

RESUMO

The origins of treponemal diseases have long remained unknown, especially considering the sudden onset of the first syphilis epidemic in the late 15th century in Europe and its hypothesized arrival from the Americas with Columbus' expeditions1,2. Recently, ancient DNA evidence has revealed various treponemal infections circulating in early modern Europe and colonial-era Mexico3-6. However, there has been to our knowledge no genomic evidence of treponematosis recovered from either the Americas or the Old World that can be reliably dated to the time before the first trans-Atlantic contacts. Here, we present treponemal genomes from nearly 2,000-year-old human remains from Brazil. We reconstruct four ancient genomes of a prehistoric treponemal pathogen, most closely related to the bejel-causing agent Treponema pallidum endemicum. Contradicting the modern day geographical niche of bejel in the arid regions of the world, the results call into question the previous palaeopathological characterization of treponeme subspecies and showcase their adaptive potential. A high-coverage genome is used to improve molecular clock date estimations, placing the divergence of modern T. pallidum subspecies firmly in pre-Columbian times. Overall, our study demonstrates the opportunities within archaeogenetics to uncover key events in pathogen evolution and emergence, paving the way to new hypotheses on the origin and spread of treponematoses.


Assuntos
Evolução Molecular , Genoma Bacteriano , Treponema pallidum , Infecções por Treponema , Humanos , Brasil/epidemiologia , Brasil/etnologia , Europa (Continente)/epidemiologia , Genoma Bacteriano/genética , História do Século XV , História Antiga , Sífilis/epidemiologia , Sífilis/história , Sífilis/microbiologia , Sífilis/transmissão , Treponema pallidum/classificação , Treponema pallidum/genética , Treponema pallidum/isolamento & purificação , Infecções por Treponema/epidemiologia , Infecções por Treponema/história , Infecções por Treponema/microbiologia , Infecções por Treponema/transmissão
15.
Nat Commun ; 15(1): 544, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228587

RESUMO

What a strain is and how many strains make up a natural bacterial population remain elusive concepts despite their apparent importance for assessing the role of intra-population diversity in disease emergence or response to environmental perturbations. To advance these concepts, we sequenced 138 randomly selected Salinibacter ruber isolates from two solar salterns and assessed these genomes against companion short-read metagenomes from the same samples. The distribution of genome-aggregate average nucleotide identity (ANI) values among these isolates revealed a bimodal distribution, with four-fold lower occurrence of values between 99.2% and 99.8% relative to ANI >99.8% or <99.2%, revealing a natural "gap" in the sequence space within species. Accordingly, we used this ANI gap to define genomovars and a higher ANI value of >99.99% and shared gene-content >99.0% to define strains. Using these thresholds and extrapolating from how many metagenomic reads each genomovar uniquely recruited, we estimated that -although our 138 isolates represented about 80% of the Sal. ruber population- the total population in one saltern pond is composed of 5,500 to 11,000 genomovars, the great majority of which appear to be rare in-situ. These data also revealed that the most frequently recovered isolate in lab media was often not the most abundant genomovar in-situ, suggesting that cultivation biases are significant, even in cases that cultivation procedures are thought to be robust. The methodology and ANI thresholds outlined here should represent a useful guide for future microdiversity surveys of additional microbial species.


Assuntos
Bactérias , Bacteroidetes , Bactérias/genética , Bacteroidetes/genética , Metagenômica/métodos , Metagenoma/genética , Filogenia , Genoma Bacteriano/genética
16.
Nucleic Acids Res ; 52(D1): D762-D769, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962425

RESUMO

The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains over 315 000 bacterial and archaeal genomes and 236 million proteins with up-to-date and consistent annotation. In the past 3 years, we have expanded the diversity of the RefSeq collection by including the best quality metagenome-assembled genomes (MAGs) submitted to INSDC (DDBJ, ENA and GenBank), while maintaining its quality by adding validation checks. Assemblies are now more stringently evaluated for contamination and for completeness of annotation prior to acceptance into RefSeq. MAGs now account for over 17000 assemblies in RefSeq, split over 165 orders and 362 families. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP), which is used to annotate nearly all RefSeq assemblies include better detection of protein-coding genes. Nearly 83% of RefSeq proteins are now named by a curated Protein Family Model, a 4.7% increase in the past three years ago. In addition to literature citations, Enzyme Commission numbers, and gene symbols, Gene Ontology terms are now assigned to 48% of RefSeq proteins, allowing for easier multi-genome comparison. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/. PGAP is available as a stand-alone tool able to produce GenBank-ready files at https://github.com/ncbi/pgap.


Assuntos
Archaea , Bactérias , Bases de Dados de Ácidos Nucleicos , Metagenoma , Archaea/genética , Bactérias/genética , Bases de Dados de Ácidos Nucleicos/normas , Bases de Dados de Ácidos Nucleicos/tendências , Genoma Arqueal/genética , Genoma Bacteriano/genética , Internet , Anotação de Sequência Molecular , Proteínas/genética
17.
Nucleic Acids Res ; 52(D1): D714-D723, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37850635

RESUMO

Here, we present the manually curated Global Catalogue of Pathogens (gcPathogen), an extensive genomic resource designed to facilitate rapid and accurate pathogen analysis, epidemiological exploration and monitoring of antibiotic resistance features and virulence factors. The catalogue seamlessly integrates and analyzes genomic data and associated metadata for human pathogens isolated from infected patients, animal hosts, food and the environment. The pathogen list is supported by evidence from medical or government pathogenic lists and publications. The current version of gcPathogen boasts an impressive collection of 1 164 974 assemblies comprising 986 044 strains from 497 bacterial taxa, 4794 assemblies encompassing 4319 strains from 265 fungal taxa, 89 965 assemblies featuring 13 687 strains from 222 viral taxa, and 646 assemblies including 387 strains from 159 parasitic taxa. Through this database, researchers gain access to a comprehensive 'one-stop shop' that facilitates global, long-term public health surveillance while enabling in-depth analysis of genomes, sequence types, antibiotic resistance genes, virulence factors and mobile genetic elements across different countries, diseases and hosts. To access and explore the data and statistics, an interactive web interface has been developed, which can be accessed at https://nmdc.cn/gcpathogen/. This user-friendly platform allows seamless querying and exploration of the extensive information housed within the gcPathogen database.


Assuntos
Bases de Dados Genéticas , Infecções , Saúde Pública , Humanos , Genoma Bacteriano/genética , Genômica , Fatores de Virulência/genética , Infecções/microbiologia , Infecções/parasitologia , Infecções/virologia , Animais
18.
Nature ; 625(7993): 157-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093016

RESUMO

Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Here we analyse biospecimens from a randomized, controlled trial of a microbiome-directed complementary food (MDCF-2) that produced superior rates of weight gain compared with a calorically more dense conventional ready-to-use supplementary food in 12-18-month-old Bangladeshi children with moderate acute malnutrition4. We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate structures in MDCF-2 and faeces. The results reveal that two Prevotella copri MAGs that are positively associated with WLZ are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2. The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide-utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2) the levels of faecal carbohydrate structures in the trial participants. These associations suggest that identifying bioactive glycan structures in MDCFs metabolized by growth-associated bacterial taxa will help to guide recommendations about their use in children with acute malnutrition and enable the development of additional formulations.


Assuntos
Alimentos , Microbioma Gastrointestinal , Desnutrição , Polissacarídeos , Humanos , Lactente , Bactérias/genética , Bangladesh , Peso Corporal/genética , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Desnutrição/microbiologia , Metagenoma/genética , Polissacarídeos/metabolismo , Aumento de Peso
19.
Mol Plant Microbe Interact ; 37(2): 93-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105425

RESUMO

Rapidly evolving bacterial pathogens pose a unique challenge for long-term plant disease management. In this study, we investigated the types and rate of mutations in bacterial populations during seasonal disease epidemics. Two phylogenetically distinct strains of the bacterial spot pathogen, Xanthomonas perforans, were marked, released in tomato fields, and recaptured at several time points during the growing season. Genomic variations in recaptured isolates were identified by comparative analysis of their whole-genome sequences. In total, 180 unique variations (116 substitutions, 57 insertions/deletions, and 7 structural variations) were identified from 300 genomes, resulting in the overall host-associated mutation rate of ∼0.3 to 0.9/genome/week. This result serves as a benchmark for bacterial mutation during epidemics in similar pathosystems. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Doenças das Plantas , Xanthomonas , Estações do Ano , Doenças das Plantas/microbiologia , Bactérias/genética , Genoma Bacteriano/genética , Mutação , Xanthomonas/genética
20.
Proc Natl Acad Sci U S A ; 121(1): e2304934120, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147560

RESUMO

Pangenomes exhibit remarkable variability in many prokaryotic species, much of which is maintained through the processes of horizontal gene transfer and gene loss. Repeated acquisitions of near-identical homologs can easily be observed across pangenomes, leading to the question of whether these parallel events potentiate similar evolutionary trajectories, or whether the remarkably different genetic backgrounds of the recipients mean that postacquisition evolutionary trajectories end up being quite different. In this study, we present a machine learning method that predicts the presence or absence of genes in the Escherichia coli pangenome based on complex patterns of the presence or absence of other accessory genes within a genome. Our analysis leverages the repeated transfer of genes through the E. coli pangenome to observe patterns of repeated evolution following similar events. We find that the presence or absence of a substantial set of genes is highly predictable from other genes alone, indicating that selection potentiates and maintains gene-gene co-occurrence and avoidance relationships deterministically over long-term bacterial evolution and is robust to differences in host evolutionary history. We propose that at least part of the pangenome can be understood as a set of genes with relationships that govern their likely cohabitants, analogous to an ecosystem's set of interacting organisms. Our findings indicate that intragenomic gene fitness effects may be key drivers of prokaryotic evolution, influencing the repeated emergence of complex gene-gene relationships across the pangenome.


Assuntos
Escherichia coli , Genoma Bacteriano , Bactérias/genética , Escherichia coli/genética , Evolução Molecular , Genoma Bacteriano/genética , Filogenia , Células Procarióticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...